

UM10043_1

ISP1183 Firmware
Programming Guide

October 2003

We welcome your feedback. Send it to wired.support@philips.com.

Philips Semiconductors - Asia Product Innovation Centre
Visit www.semiconductors.philips.com/buses/usb or www.flexiusb.com

User’s Guide

Rev. 1.0

Revision History:
Version Date Description Author
1.0 October 2003 First release. GUO Yang Bin

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 2 of 25

This is a legal agreement between you (either an individual or an entity) and Philips Semiconductors. By accepting
this product, you indicate your agreement to the disclaimer specified as follows:

DISCLAIMER
PRODUCT IS DEEMED ACCEPTED BY RECIPIENT. THE PRODUCT IS PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND. TO THE MAXIMUM EXTENT PERMITTED BY APPLICABLE LAW, PHILIPS
SEMICONDUCTORS FURTHER DISCLAIMS ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANT ABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NONINFRINGEMENT. THE ENTIRE RISK ARISING OUT OF THE USE OR PERFORMANCE OF THE
PRODUCT AND DOCUMENTATION REMAINS WITH THE RECIPIENT. TO THE MAXIMUM EXTENT
PERMITTED BY APPLICABLE LAW, IN NO EVENT SHALL PHILIPS SEMICONDUCTORS OR ITS SUPPLIERS BE
LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, DIRECT, INDIRECT, SPECIAL, PUNITIVE, OR OTHER
DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR OTHER PECUNIARY LOSS)
ARISING OUT OF THIS AGREEMENT OR THE USE OF OR INABILITY TO USE THE PRODUCT, EVEN IF
PHILIPS SEMICONDUCTORS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 3 of 25

CONTENTS
1. INTRODUCTION... 5

2. ARCHITECTURE.. 6
2.1. FIRMWARE STRUCTURE.. 6

2.1.1. Hardware Abstraction Layer—HAL4SYS.C.. 6
2.1.2. Hardware Abstraction Layer—HAL4D13.C .. 6
2.1.3. Interrupt Service Routine—ISR.C.. 6
2.1.4. Protocol Layer—CHAP_9.C .. 7
2.1.5. Protocol Layer—D13bus.C ... 7
2.1.6. Main Loop—MAINLOOP.C .. 7

2.2. PORTING THE FIRMWARE TO OTHER CPU PLATFORM ... 7
2.3. USING THE FIRMWARE IN THE POLLING MODE... 7

3. HARDWARE ABSTRACTION LAYER FOR A SYSTEM .. 7

4. HARDWARE ABSTRACTION LAYER FOR THE ISP1183 .. 8

5. INTERRUPT SERVICE ROUTINE.. 10
5.1. BUS RESET ... 11
5.2. SUSPEND CHANGE ... 11
5.3. EOT HANDLER .. 12
5.4. CONTROL ENDPOINT HANDLER.. 12
5.5. CONTROL OUT HANDLER .. 12
5.6. CONTROL IN HANDLER ... 14
5.7. BULK ENDPOINT HANDLER .. 15
5.8. ISO ENDPOINT HANDLER .. 16

6. MAIN LOOP.. 18

7. STANDARD DEVICE REQUEST.. 19
7.1. CLEAR FEATURE REQUEST ... 19
7.2. GET STATUS REQUEST ... 20
7.3. SET ADDRESS REQUEST.. 20
7.4. GET CONFIG REQUEST.. 21
7.5. GET DESCRIPTOR REQUEST .. 21
7.6. SET CONFIG REQUEST ... 21
7.7. GET OR SET INTERFACE REQUEST .. 22
7.8. SET FEATURE REQUEST .. 22

8. VENDOR REQUEST .. 23
8.1. VENDOR REQUEST FOR BULK TRANSFER.. 23
8.2. HOST SIDE PROGRAMMING CONSIDERATIONS... 24

9. REFERENCES.. 25

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 4 of 25

FIGURES
Figure 2-1: Firmware Structure of the ISP1183... 6
Figure 5-1: Flowchart of the ISR... 10
Figure 5-2: State Machine of a Control Transfer .. 12
Figure 5-3: Flowchart of a control OUT handler.. 13
Figure 5-4: Flowchart of a control IN handler... 14
Figure 5-5: Flowchart of a bulk OUT handler ... 15
Figure 5-6: Flowchart of a bulk IN handler .. 16
Figure 5-7: Flowchart of an ISO OUT handler .. 17
Figure 5-8: Flowchart of an ISO IN handler... 17
Figure 6-1: Flowchart of Main Loop... 18
Figure 7-1: Flowchart of Clear Feature... 19
Figure 7-2: Flowchart of Get Status... 20
Figure 7-3: Flowchart of Set Address .. 20
Figure 7-4: Flowchart of Get Config.. 21
Figure 7-5: Flowchart of Set Config ... 22
Figure 7-6: Flowchart of Set Feature ... 23

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corp. in the United States
and/or other countries. The names of actual companies and products mentioned herein may be the trademarks of
their respective owners. All other names, products, and trademarks are the property of their respective owners.

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 5 of 25

1. Introduction
The ISP1183 is a USB interface device, supporting data transfer at full-speed (12 Mbit/s). It has up to 14
configurable endpoints, and has a fast general-purpose parallel interface.

To a microcontroller or a microprocessor, the ISP1183 appears as a memory device with an 8-bit data bus and a
1-bit address bus. It has 2462 bytes of internal FIFO memory. The type and FIFO size of each endpoint can be
individually configured, depending on the required packet size. For increased data throughput, isochronous and
bulk endpoints are double-buffered.

The objective of the firmware is to achieve the fastest transfer rate over USB for the ISP1183. Peripherals such as
mobile phones, printers, scanners, external mass storage (Zip® drive) devices, and digital still cameras can use the
ISP1183 to transfer data over the USB. The CPUs in these devices are busy handling many tasks such as device
control, data and image processing. The ISP1183 firmware is designed to be fully interrupt-driven. While the CPU
is performing a foreground task, the USB transfer is being handled in the background. This assures the best
transfer rate, better software structure, and also simplifies programming and debugging.

This firmware-programming guide aims to help you utilize the ISP1183 more efficiently.

The organization of this document is as follows:

• Section 2 describes architecture of the firmware. It also introduces how to port the firmware to other
CPU platforms.

• Section 3 describes the hardware abstraction layer.

• Section 4 covers the ISP1183 command interface and implementations of the ISP1183 command sets.

• Section 5 focuses on Interrupt Service Routine (ISR). It gives details on individual endpoint handlers,
including control endpoint, bulk endpoint and isochronous endpoint handlers.

• Section 6 describes the Main Loop that executes in the foreground.

• Section 7 describes the firmware implementation of USB device request based on chapter 9 of the
Universal Serial Bus Specification Revision 2.0.

• Section 8 introduces the firmware implementation of vendor request.

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 6 of 25

2. Architecture

2.1. Firmware Structure
The firmware for the evaluation (eval) board consists of six building blocks, as shown in Figure 2-1.

Figure 2-1: Firmware Structure of the ISP1183

2.1.1. Hardware Abstraction Layer—HAL4SYS.C
This is the lowest layer code in the firmware, which performs hardware-dependent I/O access to the ISP1183, as
well as the eval board hardware. When porting the firmware to other CPU platforms, this part of the code always
requires modifications or additions.

2.1.2. Hardware Abstraction Layer—HAL4D13.C
To simplify programming with the ISP1183, the firmware defines a set of command interfaces, which encapsulate all
the functions used to access the ISP1183.

2.1.3. Interrupt Service Routine—ISR.C
This part of the code handles interrupt generated by the ISP1183. It retrieves data from ISP1183's internal FIFO to
the CPU memory, and sets up proper event flags to inform the Main Loop program for processing.

Main Loop: Dispatches USB request,
processes USB bus event and so on.

Mainloop.c

Standard Request
Chap_9.c

Vendor Request
D13bus.c

Interrupt Service Routine
ISR.c

Hardware Abstraction Layer
Hal4D13.c

Hardware Abstraction Layer
Hal4Sys.c

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 7 of 25

2.1.4. Protocol Layer—CHAP_9.C
This Protocol layer handles standard USB device request, which is defined in chapter 9 of the Universal Serial Bus
Specification Rev. 2.0. The firmware implementation of the USB device request is described in detail in Section 7.

2.1.5. Protocol Layer—D13bus.C
This Protocol layer handles specific vendor requests. For example, bulk transfer and isochronous transfer.

2.1.6. Main Loop—MAINLOOP.C
The Main Loop checks the event flags and passes to the appropriate subroutine for further processing. It also
contains the code for human interface, such as VBUS detect and key scan.

2.2. Porting the Firmware to Other CPU Platform
The following table shows the modifications that are required on building blocks. There are two levels of porting.
The first level is Standard Device Request, that is, USB Chapter 9 only, which is to enable the firmware to pass
enumeration by supporting standard USB requests. The second level is full product development; this involves
product-specific firmware code, that is, Vendor Request.

File Name Chapter 9 Only Product Level

HAL4SYS.C Port to hardware specific. Port to hardware specific.

HAL4D13.C No change. No change.

ISR.C No change. Add product-specific processing on Generic
and Main endpoints.

CHAP_9.C No change. Product-specific USB descriptors.

D13BUS.C No change. Add vendor request supports, if necessary.

MAINLOOP.C Depends on the CPU and system. Ports,
timer and interrupt initialization need to be
rewritten.

Add product-specific Main Loop processing.

2.3. Using the Firmware in the Polling Mode
It is very easy to use the firmware in the polling mode. Inside the Main Loop, add the following code:

if(interrupt_pin_low)
 fn_usb_isr();

Typically, the ISR is initiated by hardware. In the polling mode, the Main Loop detects the status of the interrupt
pin, and invokes ISR, if necessary.

3. Hardware Abstraction Layer for a System
This layer contains the lowest-layer functions that need to be changed on different CPU platforms.

Hal4Sys_AcquireTimer0(void);
Hal4Sys_ReleaseTimer0(void);
interrupt Hal4Sys_Isr4Timer(void);

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 8 of 25

void Hal4Sys_WaitinUS(IN OUT ULONG time);
void Hal4Sys_WaitinMS(IN OUT ULONG time);

void Hal4Sys_ControlD13Interrupt(BOOLEAN InterruptEN);

For example, the subroutine to acquire a system timer is as follows:

void Hal4Sys_AcquireTimer0(void)
{
 if(bD13flags.bits.verbose)
 printf("enter Hal4Sys_AcquireTimer0\n");

 Hal4Sys_OldIsr4Timer = getvect(0x8);
 setvect(0x8, Hal4Sys_Isr4Timer);

 if(bD13flags.bits.verbose)
 printf("exit Hal4Sys_AcquireTimer0\n");
}

4. Hardware Abstraction Layer for the ISP1183
The following functions are defined as the ISP1183 command interface to simplify device programming. They are
the implementations of the ISP1183 command set, which is defined in the data sheet.

Hal4D13_SetEndpointConfig(UCHAR bEPConfig, UCHAR bEPIndex);
Hal4D13_GetEndpointConfig(UCHAR bEPIndex);

Hal4D13_SetAddressEnable(UCHAR bAddress, UCHAR bEnable);
Hal4D13_GetAddress(void);

Hal4D13_SetMode(UCHAR bMode);
Hal4D13_GetMode(void);

Hal4D13_SetDevConfig(USHORT wDevCnfg);
Hal4D13_GetDevConfig(void);

Hal4D13_SetIntEnable(ULONG dIntEn);
Hal4D13_GetIntEnable(void);

Hal4D13_SetDMAConfig(USHORT wDMAConfig);
Hal4D13_GetDMAConfig(void);
Hal4D13_SetDMACounter(USHORT wDMACounter);
Hal4D13_GetDMACounter(void);

Hal4D13_ResetDevice(void);

Hal4D13_WriteEndpoint(UCHAR bEPIndex, UCHAR * buf, USHORT len);
Hal4D13_ReadEndpoint(UCHAR bEPIndex, UCHAR * buf, USHORT len);

Hal4D13_Writedma(UCHAR far * buf, USHORT len);
Hal4D13_Readdma(UCHAR far * buf, USHORT len);

Hal4D13_SetEndpointStatus(UCHAR bEPIndex, UCHAR bStalled);

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 9 of 25

Hal4D13_GetEndpointStatusWInteruptClear(UCHAR bEPIndex);

Hal4D13_ValidBuffer(UCHAR bEPIndex);
Hal4D13_ClearBuffer(UCHAR bEPIndex);

Hal4D13_AcknowledgeSETUP(void);

Hal4D13_GetErrorCode(UCHAR bEPIndex);
Hal4D13_LockDevice(UCHAR bTrue);

Hal4D13_ReadChipID(void);
Hal4D13_ReadCurrentFrameNumber(void);

Hal4D13_ReadInterruptRegister(void);

For example, the implementation of the Set Mode command is as follows:

void Hal4D13_SetMode(UCHAR bMode)
{
 outport(D13_COMMAND_PORT, D13CMD_DEV_WR_MODE);
 outport(D13_DATA_PORT, bMode);

}

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 10 of 25

5. Interrupt Service Routine
The ISP1183 firmware is fully interrupt-driven. The flow of the ISR is shown in Figure 5-1.

.

.

.

ISR

ISR Entry

Read the ISP1182 Interrupt Register
Reset Idle Timer

Bus Reset?

Suspend Change?

DMA EOT?

Control In Done?

Control Out Done?

Endpoint 01 Done

Endpoint 02 Done

Endpoint 03 Done

Endpoint 0E
Done

Send EOI to Interrupt Controller

End of ISR

No

No

No

No

No

No

No

No

Set Bus Reset
Flag Yes

Set Suspend Changed Flag

DMA EOT handler
Subroutine

Ep00TxDone handler
Subroutine

Ep00RxDone handler
Subroutine

Ep01Done handler
Subroutine

Ep02Done handler
Subroutine

Ep01Done handler
Subroutine

Ep0EDone handler
Subroutine

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

SOF SOF handler SubroutineYes

No

No

Figure 5-1: Flowchart of the ISR

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 11 of 25

At the entrance of the ISR, the firmware uses the Read Interrupt register to decide the source of an interrupt and
then dispatches the interrupt to the appropriate subroutines for processing.

The ISR communicates with the foreground Main Loop through event flags ‘D13FLAGS’ and data buffers
‘CONTROL_XFER’.

typedef union _D13FLAGS
{
 struct _D13FSM_FLAGS
 {

 IRQL_1 UCHAR bus_reset : 1;
 IRQL_1 UCHAR suspend : 1;
 IRQL_1 UCHAR DCP_state : 4;
 IRQL_1 UCHAR setup_dma : 1;
 IRQL_1 UCHAR timer : 1;
 } bits;
 ULONG value;
} D13FLAGS;

typedef struct _CONTROL_XFER
{
IRQL_1 DEVICE_REQUEST DeviceRequest;
 IRQL_1 USHORT wLength;
 IRQL_1 USHORT wCount;
 IRQL_1 ADDRESS Addr;
 IRQL_1 UCHAR dataBuffer[MAX_CONTROLDATA_SIZE];

} CONTROL_XFER, * PCONTROL_XFER;

Where,

typedef struct _device_request
{
 UCHAR bmRequestType;
 UCHAR bRequest;
 USHORT wValue;
 USHORT wIndex;
 USHORT wLength;
} DEVICE_REQUEST;

Tasks are split between Main Loop and ISR as follows. The ISR collects data from the internal buffer of the ISP1183
and moves the data packet to a data buffer. When it has collected enough data, the ISR informs the Main Loop that
data is ready for processing. The Main Loop then processes the data in the data buffer.

5.1. Bus Reset
Bus reset does not require special processing within the ISR. The ISR sets the ‘bus_reset’ flag in D13FLAGS and
then exits.

5.2. Suspend Change
Suspend does not require special processing within the ISR. The ISR sets the suspend flag in D13FLAGS and then
exits.

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 12 of 25

5.3. EOT Handler
EOT does not require special processing. It indicates the last DMA transfer.

5.4. Control Endpoint Handler

Figure 5-2: State Machine of a Control Transfer

The state machine of a control transfer is shown in Figure 5-2. A control transfer always begins with the setup
stage, followed by an optional data stage. The data stage consists of one or more IN or OUT transactions. It ends
with the status stage, that is, HANDSHAKE. The preceding diagram shows the various states of transitions on the
control endpoints. The firmware uses these five states to correctly handle the control transfer.

5.5. Control OUT Handler
Figure 5-3 shows the flowchart of the control OUT handler. The microcontroller has to clear the control OUT
interrupt bit of the ISP1183 and verify whether the endpoint is full. Then, the microcontroller extracts the content
of the data OUT packet buffer by reading the control endpoint. Finally, the handler sets the ISP1183 to the proper
status.

IDLEHANDSHAKE SETUP

No-data Control
return Status

Status

Status

Status

Status

Status

DATAOUT

DATAIN

Control Read

Control Write

Status

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 13 of 25

Figure 5-3: Flowchart of a control OUT handler

For example, if the setup packet is the Set_Descriptor request, then the control transfer in the setup packet
indicates that it is a control OUT type. After executing the procedure for Set_Descriptor, the microcontroller
waits for the data phase. The host sends an OUT token through the control OUT endpoint. Then, the
microcontroller must extract data from the ISP1183 buffer.

Control OUT
Handler

Buffer Full

Setup Packet

Control State
<-

STALL

Yes

Yes

Control State =
DATAOUT?

Read Control OUT Endpoint Buffer
Clear the Buffer

All Data Received?

Control State <-
REQUESTPROC

Yes

Yes

No

No

No

Control State <-
SETUPPROC

Data OUT Packet

Control State <-
DATAOUT

No Control OUT Status Wrong
Return

Clear Control OUT
Interrupt

End of Control OUT
Handler

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 14 of 25

5.6. Control IN Handler
After the setup stage is complete, the host executes the data phase. If the ISP1183 receives a control IN packet, it
goes to ‘Control_ IN Handler’. Again, the microcontroller first needs to clear the control IN interrupt bit of the
ISP1183 by reading its Read Endpoint Status. Then, the microcontroller proceeds to send the data packet after
verifying that the ISP1183 is in the appropriate mode.

Figure 5-4: Flowchart of a control IN handler

Figure 5-4 shows the flowchart of a control IN handler. As an ISP1183 control endpoint has only 64 bytes FIFO,
the microcontroller has to control the amount of data during the transmitting phase if the requested length is
more than 64 bytes. As indicated in the flowchart, the microcontroller must check the current and remaining size
of the data to be sent to the host. If the remaining bytes are greater than 64 bytes, the microcontroller sends the
first 64 bytes and then subtract the reference length (requested length) by 64.

When the next control IN token comes, the microcontroller determines whether the remaining bytes are zero. If
there is no more data to be sent, the microcontroller needs to send an empty packet to inform the host that there
is no more data to be sent.

Control IN
Handler

Clear Control IN
Interrupt Bit

Buffer Empty?

Control State =
DATAIN?

Yes

Write Control IN endpoint
Buffer

Validate the buffer
 Control State <- DATAIN

Control State <- STALL

Last Packet?

Control Status
Wrong
Return

End of Control IN
Handler

No

Yes

No

No

Yes

Write Control IN Buffer
with

Remained Data Size
Control State <-
HANDSHAKE

Last Packet=0?

Write Control IN Buffer
with

Empty Packet
Control State <-
HANDSHAKE

Yes

No

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 15 of 25

5.7. Bulk Endpoint Handler
The ISP1183 has 16 endpoints: control IN and OUT plus 14 configurable endpoints. The 14 endpoints can be
individually defined as interrupt, bulk or isochronous—IN or OUT. The FIFO size determines the maximum packet
size that the hardware can support for a given endpoint.

The following table is the recommended register programming in the Endpoint Configuration register for a bulk
endpoint.

Bit Bit setting Description

7 1 Endpoint enable bit
6 0 for OUT

1 for IN
Endpoint direction

5 1 Enable double buffering
4 0 Bulk endpoint
3 to 0 0011 Size bits of an enabled endpoint: 64 bytes

Figure 5-5: Flowchart of a bulk OUT handler

When the host is ready to transmit bulk data, it issues an OUT token packet followed by a data packet. The

ISP1183 generates an interrupt to inform the microcontroller, which needs to clear the ISP1183 interrupt bit and
verify the data length. The flowchart of a bulk OUT handler is shown in Figure 5-5.

When the host is ready to receive bulk data, it issues an IN token. The ISP1183 generates an interrupt to inform
the microcontroller, which must clear the ISP1183 interrupt bit and return the data packet to be sent. The
flowchart of a bulk IN handler is shown in Figure 5-6.

Bulk OUT
Handler

Buffer Full

Yes

Read Bulk OUT Endpoint Buffer

All Data Received?

Yes

No

No Bulk OUT Status W rong
Return

Clear Bulk OUT
Interrupt

End of Bulk OUT
Handler

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 16 of 25

Figure 5-6: Flowchart of a bulk IN handler

5.8. ISO Endpoint Handler
The following table is the recommended register programming in the Endpoint Configuration register for an ISO
endpoint.

The flowcharts of the ISO OUT handler and the ISO IN handler are shown in Figure 5-7 and Figure 5-8,
respectively.

Bit Bit setting Description

7 1 Endpoint enable bit

6 0 for OUT
1 for IN

Endpoint direction

5 1 Enable double buffering
4 1 ISO endpoint
3 to 0 0011 Size bits of an enabled endpoint: 64 bytes

Bulk IN
Handler

Buffer
Empty?

Yes

Write Bulk IN Endpoint Buffer

Last Packet?

Yes

No

No Bulk IN Status Wrong
Return

Clear Bulk IN
Interrupt

End of Bulk IN
Handler

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 17 of 25

ISO OUT
Handler

Read ISO OUT Endpoint Buffer

All Data Received?

Yes

No

Clear ISO OUT Interrupt bIt

End of ISO OUT Handler

Figure 5-7: Flowchart of an ISO OUT handler

ISO IN Handler

Clear ISO IN Interrupt Bit

Write ISO IN Buffer

Last Packet?

End of ISO IN Handler

No

Yes

Figure 5-8: Flowchart of an ISO IN handler

Time is a key part of an isochronous transfer. A typical example of the isochronous data is voice. All isochronous
pipes move exactly one data packet per frame, that is, every 1millisecond.

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 18 of 25

6. Main Loop
Once powered, the microcontroller has to initialize its ports, memory, timer, and ISR routine handler. The
microcontroller then reconnects USB, which involves setting bit SOFTCT in the Mode register. This procedure is
important because it ensures that the ISP1183 will not operate before the microcontroller is ready to serve the
ISP1183.

The flowchart of the Main Loop is shown in Figure 6-1. In the Main Loop routine, the microcontroller polls for any
activity on the keyboard. If a key is pressed on the keyboard, the handle key commands execute the routine and
then return to the Main Loop. This routine is added for debugging purposes only. A 1-ms timer is programmed to
activate the routine to check for any keypress on the eval board.

Figure 6-1: Flowchart of Main Loop

Main Loop

Initialize ports, memory and timer
Setup ISR and program interrupt controller

Reconnect USB

Key pressed?

Timer signal?

Suspend
change

SETUPPROC

REQUESTPROC

Setup_dma?

Program exit?

End

No

No

No

No

No

No

Read key code and
handle key command

Update test LEDs on
evaluation board

Read suspend state and
display suspend change event

Dispatch setup handler
for furture processing

Dispatch device request to
protocal layer for processing

Dispatch setup DMA handler

Yes

Yes

Yes

Yes

Yes

Yes

Bus reset? Display bus reset eventYes

No

Yes

No

Loop

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 19 of 25

When polling reaches the check setup packet, the microcontroller verifies whether the current status is
SETUPPROC. Then, it dispatches it to the setup handler subroutines for processing. When reaching
REQUESTPROC, it dispatches device request to the protocol layer for processing.

7. Standard Device Request
All USB devices must respond to a variety of requests called ‘standard’ requests. These requests are used for
configuring a device, controlling the state of its interface, along with other miscellaneous features. The host issues
device requests by using the control transfer mechanism. For detailed information, refer to Chapter 9 of the
Universal Serial Bus Specification Rev. 2.0.

7.1. Clear Feature Request
In the Clear feature request, the microcontroller has to clear or disable a specific feature of the device. The
flowchart of Clear Feature is shown in Figure 7-1. The microcontroller determines whether the request is meant
for the device, the interface, or endpoints. Note: If the recipient is an interface, there is no support. Feature
selectors are used when enabling or setting features specific to the device or endpoint, such as remote wake-up. If
the recipient is a device, the microcontroller has to disable the remote wake-up function, if this function is enabled.
If the recipient is the endpoint, the microcontroller must unstall the specific endpoint through the Write Endpoint
Status command.

Figure 7-1: Flowchart of Clear Feature

Is recipient a
device?

Is recipient an
Interface?

Is recipient an
endpoint?

Clear device
feature

according to
'Feature Selector'

Yes

No

Yes

No

Yes

Unsupported
Command

No

Clear endpoint feature
according to

'Feature Selector'

Sent zero length
packet to Host

Clear Feature

End Clear
Feature

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 20 of 25

7.2. Get Status Request
In the Get Status request (see Figure 7-2), the microcontroller must return the status for the specific recipient.
The microcontroller has to determine again the recipient of the request. If the request is to the device, the
microcontroller must return the status of the device to the host. For systems having remote wake-up and self-
power capabilities, the returning data is 0x0003. If the recipient is an interface, the microcontroller should return
0x0000 to the host.

Figure 7-2: Flowchart of Get Status

7.3. Set Address Request
In the Set Address request, the device gets the new address from the content of the setup packet. The flowchart
of Set Address is given in Figure 7-3.

Note: The Set Address request does not have a data phase. Therefore, the microcontroller has to write a zero-
length data packet to the host at the acknowledgment phase.

Figure 7-3: Flowchart of Set Address

Get Status

Return device status
to the host

Is recipient a device?

Is recipient
an interface?

Return Interface
status to the host

Is recipient
an endpoint?

Return Endpoint
status to the host

End of Get
Status

Yes

No

No

Unsupported
Command

Yes

No

Yes

Write new address
to the Device Address

register

Send zero-length
packet to the host.

Set Address

End Set Address

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 21 of 25

7.4. Get Config Request
In the Get Config request, the microcontroller must return the current configuration value. The microcontroller
determines whether the device is configured. If the device is not configured, it returns a zero to the host;
otherwise, it returns a one. See Figure 7-4.

Figure 7-4: Flowchart of Get Config

7.5. Get Descriptor Request
For the Get Descriptor request, the microcontroller must return the specific descriptor, if the descriptor exists.
First, the microcontroller determines whether the descriptor type request is for device or configuration. It then
sends the first 64 bytes of device descriptor, if the descriptor type is for device. The size of the returning bytes
must be controlled because the control buffer has only 64 bytes of memory. The microcontroller must set a
register to indicate the location of the transmitted size.

7.6. Set Config Request
For the Set Config request, the microcontroller determines the configuration value from the setup packet. If the
value is zero, then the microcontroller has to clear the configuration flag in its memory and disable the endpoint. If
the value is one, then the microcontroller must set the configuration flag. Once the flag is set, the microcontroller
also needs to send the zero data packet to the host at the acknowledgment phase.

The flowchart of Set Config is given in Figure 7-5.

Has the
device been
configured?

Send 1 to the
host

Send 0 to the
host

Get Config

End Get Config

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 22 of 25

Figure 7-5: Flowchart of Set Config

7.7. Get or Set Interface Request
For the Get or Set Interface request, the microcontroller has to send a zero data packet to the host because the
ISP1183 eval board supports only one type of interface. For the Set Interface request on the ISP1183 eval board,
the microcontroller does not do anything except sending a zero data packet to the host as the acknowledgment
phase.

7.8. Set Feature Request
The Set Feature request is the opposite of the Clear Feature request. If the recipient is a device, the
microcontroller has to set the feature of the device according to the feature selector on the setup packet. There is
no support for the Interface recipient. For example, if the feature selector is 0 (which means enabling endpoint),
the ISP1183 specific endpoint must be stalled through the Write Endpoint status command. See Figure 7-6.

Did the host send
'0 to the device?

Clear device
configuration flag

Yes

No

Set device
configuration flag

Sent zero packet
to the host

Set Config

End Set
Config

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 23 of 25

Figure 7-6: Flowchart of Set Feature

8. Vendor Request
In the ISP1183 sample firmware and applet, the bulk transfer or the isochronous transfer is set up by vendor
request. This request is sent through control pipe (which is done using IOCTL_WRITE_REGISTER).
IOCTL_WRITE_REGISTER is defined by Microsoft® Still Image USB Interface in Microsoft Windows 98 DDK. A
device vendor may also define requests supported by the device.

8.1. Vendor Request for bulk transfer
The device request is defined as follows:

Is recipient a
device?

Is recipient an
interface?

Is recipient an
endpoint?

Set the device feature
according to

'Feature Selector'

Yes

No

Yes

No

Yes

Unsupported
Command

No

Set endpoint feature
according to

'Feature Selector'

Send zero-length
packet to the host

Set Feature

End Set Feature

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 24 of 25

Offset Field Size Value Comments

0 BmRequestType 1 0x40 Vendor request, device to host
1 Brequest 1 0x0C Fixed value for IOCTL_WRITE_REGISTER
2 Wvalue 2 0 Offset, set to zero
4 Windex 2 0x0471 Fixed value of the setup bulk transfer
6 Wlength 2 6 Data length of the setup bulk transfer

The details requested by the bulk transfer operation are sent in the data phase after the setup token phase of the
device request. The sample firmware and applet use a proprietary definition as shown in the following table:

Offset Field Comments

0 Address [7:0]
1 Address [15:8]
2 Address [23:16]

The start address of the requested bulk transfer.

3 Size [7:0]
4 Size [15:8]

The size of transfer.

5 Command Bit 7: ‘1’ starts the bulk transfer by DMA; ‘0’ starts the bulk transfer by PIO.
Bit 0: ‘1’ IN token; ‘0’ OUT token.

8.2. Host Side Programming Considerations
The USB device is not the only criterion that decides the transfer rate. The performance of the host side
application plays a more important role in the overall system performance because the host always controls USB
transactions.

In the sample firmware, either the bulk or ISO transfer is a sequential operation that involves both the control
endpoint and the bulk or ISO endpoint. Cooperation is important because the next step of operation is
determined by the result of the last operation. While multithreads can be used to access different pipes to increase
system performance, it makes programming much easier to process Setup Vendor Request (IOCTL) and data
transfer (WriteFile or ReadFile) operations on the main endpoints by using a single thread.

IOCTL_WRITE_REGISTER and IOCTL_READ_REGISTER use structure IO_BLOCK to exchange data with the
device driver. The following structure definition is part of the Microsoft Still Image USB Interface:

typedef struct _IO_BLOCK {
 IN unsigned uOffset;
 IN unsigned uLength;
 IN OUT PUCHAR pbyData;
 IN unsigned uIndex;
} IO_BLOCK, *PIO_BLOCK;

The IO_REQUEST structure is a proprietary definition that contains details of the Setup Vendor Request.

typedef struct _IO_REQUEST {
 unsigned short uAddressL;
 unsigned char bAddressH;
 unsigned short uSize;
 unsigned char bCommand;
} IO_REQUEST, *PIO_REQUEST;

See the following sample code:

ioRequest.uAddressL = 0;
ioRequest.bAddressH = 0;

Philips Semiconductors ISP1183 Firmware Programming Guide

UM10043_1 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.

User’s Guide Rev. 1.0—October 2003 25 of 25

ioRequest.uSize = transfer_size;
ioRequest.bCommand = 0x80; //start, write

ioBlock.uOffset = 0;
ioBlock.uLength = sizeof(IO_REQUEST);
ioBlock.pbyData = (PUCHAR)&ioRequest;
ioBlock.uIndex = 0x471;

bResult = DeviceIoControl(hDevice,

IOCTL_WRITE_REGISTERS,
(PVOID)&ioBlock,
sizeof(IO_BLOCK),
NULL,
0,
&nBytes,
NULL);

if (bResult != TRUE) {

testDlg->MessageBox("Setup DMA request failed!", "Test Error");
return;
}

bResult = WriteFile(hFile,

pcIoBuffer,
transfer_size,
&nBytes,
NULL);

9. References
• Universal Serial Bus Specification Rev. 2.0
• ISP1183 low-power Universal Serial Bus interface device data sheet

Philips Semiconductors
Philips Semiconductors is a worldwide company with over 100 sales
offices in more than 50 countries. For a complete up-to-date list of our
sales offices please e-mail
sales.addresses@www.semiconductors.philips.com.
A complete list will be sent to you automatically.
You can also visit our website
http://www.semiconductors.philips.com/sales/

www.semiconductors.philips.com

© Koninklijke Philips Electronics N.V. 2003
All rights reserved. Reproduction in whole or in part is prohibited
without the prior written consent of the copyright owner. The infor-
mation presented in this document does not form part of any quota-
tion or contract, is believed to be accurate and reliable and may be
changed without notice. No liability will be accepted by the publisher
for any consequence of its use. Publication thereof does not convey
or imply any license under patent – or other industrial or intellectual
property rights.

	1. Introduction
	2. Architecture
	2.1. Firmware Structure
	2.1.1. Hardware Abstraction Layer—HAL4SYS.C
	2.1.2. Hardware Abstraction Layer—HAL4D13.C
	2.1.3. Interrupt Service Routine—ISR.C
	2.1.4. Protocol Layer—CHAP_9.C
	2.1.5. Protocol Layer—D13bus.C
	2.1.6. Main Loop—MAINLOOP.C

	2.2. Porting the Firmware to Other CPU Platform
	2.3. Using the Firmware in the Polling Mode

	3. Hardware Abstraction Layer for a System
	4. Hardware Abstraction Layer for the ISP1183
	5. Interrupt Service Routine
	5.1. Bus Reset
	5.2. Suspend Change
	5.3. EOT Handler
	5.4. Control Endpoint Handler
	5.5. Control OUT Handler
	5.6. Control IN Handler
	5.7. Bulk Endpoint Handler
	5.8. ISO Endpoint Handler

	6. Main Loop
	7. Standard Device Request
	7.1. Clear Feature Request
	7.2. Get Status Request
	7.3. Set Address Request
	7.4. Get Config Request
	7.5. Get Descriptor Request
	7.6. Set Config Request
	7.7. Get or Set Interface Request
	7.8. Set Feature Request

	8. Vendor Request
	8.1. Vendor Request for bulk transfer
	8.2. Host Side Programming Considerations

	9. References

